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SECTION I

Introduction and Problem Definition

This report addresses a rather specific problem in the
area of multiconductor transmission theory. Specifically, we
desire to obtain an equivalent circuit in the vicinity of the
junction region of two skewed transmission lines, so that the
coupling of energy from one line to another can be estimated.

It is noted that the term "junction" does not refer to lines

in physical contact, but rather the position of smallest separa-
tion between the lines. The geometry of the problem is shown

in Figure 1l.1. It consists of a two-wire transmission line of
characteristic impedance Zc2 passing over another two-wire trans-
mission line of characteristic impedance ch. The wires 1 and 2
in Figure 1.1 are both parallel to a perfectly conducting ground
plane and are located at heights of h1 and h2 respectively.
The wires are assumed to be of the same radius, although this is

not essential. Figure 1.2 shows an equivalent geometry with the

image conductors; the relevant distances between source and
observation points are also indicated. As illustrated in this ;
figure, the two lines are modelled by closed rectangular loops i

by introducing the vertical segments at both ends. o

The objective is to compute the elements of a coupling

model in the form of an equivalent circuit. 1In general, for

arbitrary values of § in the range of [0 < ¢ ¢ (v/2)], one
would expect inductive and capacitive coupling between the trans-
mission lines. The special case of § = 0 is precluded here

because of the distributed nature of the coupling which cannot

be treated with localized lumped elements. Appendix A includes

3




Figure 1.1. Two skew=2d wires of the same radius
above an image plane.

Line 2

G 1 » '2’

‘ I._4 2L
U

Figure 1.2. Equivalent pair of skewed two- .re
transmission lines of length 2L.
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this special case, reported elsewhere [1], for the sake of
completeness.

. For values of © in the range of [0 < 6 < (7/2)],
the inductive-capactive coupling may be represented by a
junction equivalent circuit of Figure 1.3. In this figure,

13 and C2j are the lumped capacitances in lines 1 and 2

owing to the junction. That is, Clj is computed from thke

= ¢

excess line capacitance of line 1, due to ..e presence of

line 2, for a distance of sufficient magnitude away from the
~junction on both sides. ij is the lumped mutual capacitance.
The inductive coupling is shown in the form of a transformer

comprised of self inductances Llj and sz, as well as a

mutual inductance Lmj' However, we immediately recognize
that since the wires are assumed to be electrically thin and
perfect conductors, there is negligible reduction in the
self-inductance of each wire, due to the praximity of the
other wire. This implies that Llj = sz = 0 and results

in only inductive coupling via L Figure 1.4 shows the

j.
coupling model after setting the excess self-inductances to
zero and representing the mutual inductances by appropriate

voltage sources. Figure l.5a is essentially the same as

Figure 1.4, showing the equivalent circuit model above the
image plane. In Figure 1.5b, we show the symmetric form of
the coupling model and the potentials on all the four lines
;' 5 with respect to the image plane which is chosen as the

reference potential.

1. C.R. Paul and A.E. Feather, "Computation of the Trans-
mission Line Inductance and Capacitance Matrices from
the Generalized Capacitance Matrix," IEEE Trans.

Vol. EMC-18, No. 4, pp. 175-183, November 1976.
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Figure 1.3. A generalized coupling model for the
junction of two skewed transmission lines.

Figure 1.4. Coupling model showing the mutual
inductance as voltage sources; (note

that the sut .cript j, denoting the
junction hac seen dropped).
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Ly (I-1g) = Vo

. potential V, Line 2
C
A potential V, Line |
2
_l._ b
G T %
O= O
o 5
¥
Figure l.5a. Equivalent circuit above the image
plane.
v‘&
G wirep f( potential Vg 2
-/ G .
A wire | otential V| ‘
v T & v
\ ' | Plane of symmetry
5 5 ¥ g = T (reference potential) ;
K # tential -V, & %
rvﬂro | entia
4 s
¢ wire? potential D
A V,'

Figure 1.5b. Symmetrical form of the above circuit.




The problem at hand then, is to determine the
elements L , C;, C, and C,- For ease of data presenta-
tion, we define a set of normalized lumped parameters as

follows.

L (nl) _

m Lm/(hlL.

1)

(nl) _ '

(1.1)

(n2) e '
c, = cz/(hzc 2)

c(nl)

& Cglfinety)

The superscript nl - in the above equation indicates normali-
zation with respect to the line constants of line 1 and like-

wise for n2. Some preliminary information concerning the two

isolated transmission lines is given below in Table 1. Note
that the image plane is chosen as the reference potential.
TABLE I. PRELIMINARY INFORMATION ABOUT THE TWO ISOLATED
TRANSMISSION LINES.
Parameter Line 1 Line 2
radius a (a<<hl) a (a<<h2)
separation 2h 2h ' gf
1 2 |
inductance/ unit L'l L'2 s |
length " i %,
~_9 o O 2
5m 2n(2h1/a) 5T Zn(2h,/a) ; ‘ié
capacitance/unit c'y c', i
length L
| a 2ﬂ€°/£n(2h1/a) ngeo/g’n(th/a) g #»
%
characteristic L', /C' vi'./C" A
impedance A & 1oE b
o= 60 ln(Zhl/a) | = 60 1n(2h2/a) ¥
X
8 %

T T e T 3, 1 W TR . © Vo % W
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SECTION II
Mutual Inductance
In this section, we evaluate the mutual inductance
element Lm between the two skewed transmission lines of
Figure 1.2. It is believed that more insight into the
problem is gairced by looking al Lhe skewed Lransmission
lines of finite length 2L and later let L tend to

infinity. The assumptions made in the following analysis

are listed below.

L >> h (long lines) (2.1a)

(h> =) =>'a (sufficiently apart) (2.1b)

0 <6 < (n/2), but 6 # 0 (no distributed (2.1c)
interaction)

(3/861)(charge distribution)

0 (thin wire approximation

(8/362)(charge distribution) = 0 or rotational symmetry)

(2.14)
where h_ and h, are respectively smaller and larger of

h1 and hz. With the above assumptions, one can write

the mutual inductance as [2],

U — —
~ |-2 ; ST
In = |a= § ds, $ R, ds, (2.2)

by = free space permeability = 47 x 10-7(H/m), and

where

C1 and C2 represent the closed (assumed) loops formed
by the two transmission lines. With reference to Figure

1.2, we can formally write

2. R.W.P. King, "Fundamental Electromagnetic Theory,"

Chapter VI, Dover Publications, Inc., New York, 1963.
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Taking advantage of symmetry, we have
U —
o = 1
Lm > — f dsl . f d52 (ﬁ) (2.3)
BCDF PQRS

TUVP

Since there is no inductive interaction between the
sections of transmission lines that are orthogonal,

equation (2.3) simplifies to

u L L
~ o 1 1
Lm - lcos (B)Idxf R W ag
A 12¢
h h
1 1
+ f dzlf ﬁ— -ﬁ—)dz2 (2.4a)
0 h

— [cos (O)I (e) + I, ()] (2.4Db)

In view of the assumptions of equation (2.1), the R's in

the above equation may be approximated by

Ry, = (x? + £2 - 2xE cos (8) + (h, - h)?1¥ (2.5a)
Ry, [x° + €2 - 2x€ cos (8) + (h, + h))]* (2.5b)
Ry = [(z, - z)% + 41? sin? (0/2)1% (2.5¢)
R, = [(z, - z))° + 41 cos? (0/2)]" (2.5d)

10




We will now proceed to evaluate the two integrals 11(9)

and Iz(e) separately. Setting
& "= [{hy - h1)| and 8 = (h, + h,) (2.6)
Il(e) is given by

L L

1 1
I,(0) = dx i dg
1 x2+£2-2xf cos (8)+a’ ‘,;2+£2~2x£ cos (9)+82
0 ~-L
L
= fdx f L = 1 dg
0 0 ‘/;:2+gz-2xg cos (e)+a2 ‘Ix2+52-2xg cos (e)ﬂa2
L

+J{. L - L \ dg
0 (¥x2+g2+2xg cos (e)+a2 J;2+g2+2xg cos (e)+32)

dx [}1l(x g) + Ill(x'" ei] (2.7)

o%r-

where

I,,(x,0) =fd£ .
0 J(:(2+a2)+[-2x cos (9)]§+52

L ) (2.8)
%x2+32)+[-2x cos (gllg+ g2

This integral may be performed using the result 2.261 of

reference [3],

3. 1.S. Gradshteyn and I.M. Ryzhik, "Table of Integrals,
Series, and Products," Academic Press, New York, 1965.
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Ill(x,ﬁ)

‘&2+a2-2xL cos (9)+L2 + L-[x cos (98}

x2+B -2xL cos (e)+L2 + L-[x cos (0)

ml{4x2+82 - x cos (8)

x2+a2 - x cos (0)
(2.9)

dx2+82 - x cos (9)

x +a2 - x cos (9)

]
>
=

+ In(xo 8)

where In(e) is the first term on the right side of

equation (2.9). Therefore,

2. .2
bix Jx +B8° + x cos (91}‘, I (x,7m-0) (2.10)
dx2+a2 + x cos (0)

Substituting the above two equations into equation (2.7), we

Ill(x,w-e) =

obtain,
L
X +8 cosec2 (e)l
Il(e) = dx n I (x,0) dx
0 x +a cosec (6)
L
+ ] In(x,v-e) dx (2.11)
0

Using the result 2.733.1 of reference [3],

2,52 2 [ 28 L sin (9)
I]_(e) =L n {Lz"'sz COSGC2 (9)} + —.——-(—)—Sln 5 arctan l___B__.']
L"+a” cosec” () :
[ 2q L sin (9)
g —-——s in (e) arctan I_a—_!l

+ {in(e) + in(ﬂ-eq (2.12)




where in(e) is an integral to be evaluated numerically

and is given by
L

f In(x,e) dx

0

i (@)

2 Jx2+a2-2xL cos (6) + Lz-hL-[x cos (6)]
2 dx

!}
ot

x2+62-2xL cos (6) + L24-L-[x cos (0)]

: (2.13)
It may be shown that, when the lengths of the transmission

lines are large compared to the heights, in(e) does not
contribute significantly to the result in equation (2.12).
We still have the second term of equation (2.4a) to compute,
which accounts for the interaction between the vertical end

wires and it is given by

ny s
1,(0) = f dz, j az, 2 - 2
0 -h TR SR TR
2 250 1 2l 2
(2.14a)
where
A, = 2L sin (8/2); A, = 2L cos (8/2) (2.14b)
Consider the first term on the right side of the above,
i Ly
Integral = f dz, f dz, 1 {2.15)
0 ¥ J R 2
h2 (z2 zl) + Ay

-

Using (2.261.2 of Ref. [3]), we can evaluate this integral

to be

W TP s
KA Tt o g
s (ol

a




hy '
hz—z1 h2+z1
=f dzl [arcsinh { = } + arcsinh{ A }]
1/ 1
0
[ (8/a,)) (a/A,)
= A arcsinh . (y) dy - j' arcsinh (y) dy
(h,/A.)
(h, /2, (hy/A;)
[ (8/A))
= A arcsinh (y) dy
? L(a/Al)

usisng (2.741.2. of [3]), we get

= [B arcsinh (B/Al) - & arcsinh (a/Al) -’/82+A2 +\/a2+Ai ]

1
(2.16)
Therefore
12(9) = B[arcsinh (B/Al) - arcsinh (B/AQ]
{ —a[arcsinh (a/Al) - arcsinh (a/Az)]
" [\/32 + Ai Vg2 4 a2
2 2 2 2
+ [\/a—+ Al —Ja + AZ] (2.17)

Substituting our results for Il(e) and Iz(e) from
equations (2.12) and (2.17) respectively into equation

(2.4b), we finally obtain for the mutual inductance

T s e N

L o

.
e ——————
e PR




T 1+ 8—2 csc2 (6)1
o L -
Lm'-'--;r— L n 3 = cos (9) + {in(e) +in(1r e)}cos (o)
1+ 12- csc’ (9)
L :

+

{E%ﬁ_(éT arctan (Ls:;n e)- sf% oY arctan(-l‘i-:-‘-n—g)} cos (6)
+ B {%rcsinh (B/A;) - arcsinh (B/Aza

- a{arcsinh (a/A;) - arcsinh ((!/Az)}

- (TR - R

+ {\/az + Ai = Vuz + Ag}

(2.18)

We recall that in the above expression, the various quantities
are
L = half length of the transmission lines

6 = skew angle

B=(h; +hy)) ; a=|h, -h]
A, = 2L sin (6/2) ; A, = 2L cos (6/2) Hy

| o

u, = free space permeability |3

and in(e), given in equation (2.13), is an integral which
can be evaluated numerically, however small its contribution

may be.




A. Discussion of Results

Equation (2.18) is the mutual inductance of two
skewed transmission lines each of length 2L. It is
interesting to note that for finite values of heights

h, and h2 and the skew angle in the range of

1l
0 <0 < (n/2), and letting the length of the transmission

lines tend to infinity, the mutual inductance becomes

LLE::; Lm = uo(B-a) cot (0)

= H [(h,+h)) - |h2-hl|] cot (9)
= 2u° h_  cot (0) (2.19)
with h, being the smaller of (h1 and hz).

This result has been independently verified by
starting the problem with infinitely long lines. It suggests
that if the transmission lines are infinitely long, the mutual
inductance is a property of only the transmission line with
smaller spacing. ;

However, under the assumptions outlined in equation

r

(2.1), equation (2.18) accurately gives the value of the

mutual inductance and is parametrically displayed in Figures

2.1, 2.2, and 2.3. The quantity plotted is the normalized

(nl)

mutual inductance L of equation (1.1) given by

m

Ly e TR A <




(nl)
- L 5 .
Lm = Lm/ [hlLl] (dimensionless)

Lm/ [hl(;rﬂ) 2,,(32_1)] (2.20)

All linear dimensions are normalized with respect to hl

by choosing h1 = 1. The radius a is chosen to be .01347

so that £&n(2h;/a) = 5 and it occurs only in the normaliza-

L(nl)

tion procedure. With this choice of normalization, m

is a function of three variables, § , h2 and L. 1In

Figures 2.1, 2.2, and 2.3, Lénl) is shown plotted as a
function of these three variables respectively. In computing
Lénl) from equation (2.20), the "exact" expression of Lm
given by equation (2.18) is used which includes the contribu-
tion from the end wires as well. The two integrals appear-
ing in equation (2.18) have smooth integrands and a simple
Simpson's rule of integration was found to be adequate.

As a function of the skew angle 6, the mutual in-
ductance in Figure 2.1 goes to zero at 6 = (n/2), as one
would expect. In this figure, one can see the insensitivity
of the mutual inductance with respect to h even for small

2
® as the lengths of the transmission line increase. For all

the four cases of varying L, it is seen that for 6 = 0, the
mutual inductance displays a singularity corresponding to the

transmission line or distributed type of interaction.

RN by S
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In Figure 2.2, the normalized mutual inductance is
plotted as a function of (hz/hl)' for a fixed skew angle
® and with the length (L/hl) as a parameter. The four values
of © considered are = 15°, 20°, 30°, 45°. For all these

cases, the normalized mutual inductance is zero initially

[(hz/hl) = 0] and reaches a peak when [(hz/hl) = 1] and
monotonically decreases as (hz/hl) is increased beyond the
value of unity. Also, as one would expect, the peak value
itself is decreasing as 6 is increased and the normalized
mutual inductance tends to zero for the orthogonal case of

6 = 90°.

Finally in Figure 2.3, the normalized mutual inductance
is shown plotted as a function of the length of the wires
(L/hl) with the relative height (hz/hl) as a parameter.

Note that the normalized length (L/hl) is plotted on a log-
arithmic scale and the same four values of 8 as before are
considered. These plots show that at the two extreme values
[(L/hl) + 0 and (L/h1)>>1], the normalized mutual inductance
tends to values that are independent of (hz/hl). The residual
@ value when (L/hl) = 0 accounts for the interaction between
the vertical end members of the transmission lines. However,

for large lengths L>>h>, the mutual inductance is seen to

obtain a value which is dependent only on h< (see equation

Ly 2.19). We reach an interesting conclusion that, if the

-zj
}
‘ «;




transmission lines are infinitely long, the mutual inductance
: is a property of only the transmission line with the smaller

wire separation.
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SECTION III

Capacitive Coupling f

The physical mechanism that justifies the use of a
i capacitive coupling model of Figure 1.5 may be described as

follows. When the two lines are present by themselves and

unperturbed by the other, the total charge per unit length on
the two wires are constants given by Q'lo and Q'ZO ([141) .

The effect of the proximity of one wire on the other results

in a redistribution of charge in the vicinity of the junction
so that the total charges per unit lengths Q'l(x,e) and

Q'z(c,e) now become position dependent according as
Q'l(xle) = Q|10 + q'l(xre)

where the excess total charges per unit length q‘l(x,e) and
q'z(C,B) permit us to derive a capacitive coupling model.
Implicit in such a derivation is an assumption [4] that the

excess charges which decay with distance away from the junction

will have an integrated effect and can be represented by lumped
parameters at the junction itself.

We also note here that for the case of 06 = 0, the

total charges per unit length once again become independent of

position, denoted by

AL

4. R.W.P. King, "Transmission Line Theory," Chapters I and

V, Dover Publications, Inc., New York, 1965.




Q'l(X.O)

Q10 = (219 * 2'1¢)

(3.2)

Q'z(;'o) leo = ‘Q'zo + Q'zo)

F where the excess charges for the case of 6 = 0 also are

constants according as

i

Q'l(X.O)
(3.3)

q',(5,0)

i
o

N

(=]

The entire electrostatic system for all values of 6 is electri-

cally neutral because the image wires carry exact amounts of

opposite charges, i.e.,

loy o = 0ym0)] 5 [2r,000 = -2, ,0)

(3.4)

[e o) = -¢' x,0)] lar, 201 = a7, (z,0)]

Furthermore, by virtue of symmetry about the junction, all the
charges are even functions in their respective variables, as

shown below.

-e

[2 =000 = @ ex0] 5 [2,z0 = 2 ,0-00)]

(3.5)

[q'l(x,9) q'l(-x,eﬂ ; [q'z(c,e) q'z(-c,eﬂ

{ " For O in the range of our interest [0 < 6 < (7/2)],

the coupled pair of integral equations for the potentials




vy and V2 in terms of the linear charge densities may be

written down as,

) ©
= V1= ﬁl?(; fQ'l(x',e) Kll(x,x') dax' + 4—-1]"—% ]Q'z(c',e) Klz(x,C'B) azc!
-0 =00

(3.6a)

[} [+ -]

Jorp @t ry, en ar

=00

e ' ' 1
Vo = Ime jQ'l(x r &) KZl(c'x 0) dxt + 4Te
o o

-00

(3.6b)

where the kernels may be written down by inspection as,

1 1 1 1
K,,(x,x') = — = : K,.(x,z',0) = _ - (3.7a)
L [ru rll'] o [rlz rlZ']

Ky (50" 200 =[;§-1— - ;2—11—] Kys(2e5") = [r;—z - rzlz':] (3.7b)
with
ry, = Leex? + 2212 1 = (xex) 2 + anh1/? (3.8a)
I, = [x2+;'2-2xc' cos(8) + a211/2

= [{z'-x cos (0)}% + {a? + x? sin?(0) nN1/? (3.8b)
Ly = [x2 + ;'2 ~ 2xz' cos(6) + 32]1/2 ‘

= [{g'- x cos(8)}? + {82 + x? sin®(0) }11/2 (3.8¢)
Ty = [x'2 + ;2 - 2x'g cos(9) + a2]1/2

= [{x' - ¢ cos(8)}% + {a® + £? sin?(6) }11/2 (3.8d)
Iy = [x'2 + ;2 ~ 2x'g cos(6) + 32]1/2

= [{x'-¢ COS(B)}:Z + (8% + ;2 sinz(e)}ll/2 (3.8e)
rgp = L=t + a%1¥2; = (g-t9)? + d1/? (3.8%)
where recall that o = |h2 - hll and B = (h2 + hl) (3.89)
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Substituting for the total charges Q‘l(x,e) and Q‘z(;,e) in

equation (3.6) from equation (3.1), we have
[

= £ : 1
v1.-'[Q.10 {Mrso fxll(x'x') dx} 2 dme

-4

Q'l(x' 5 e)Kll (x,x') dx'

J :
] .

0

1 i 1
+Q {4175 lez(x.r,-e) dc}+ e q'z(c'.S)Klz(x,c'e) dc] ‘
20 o 4 - n
= (3.6a)
0
1 ' 1 , , : :
V2= [Q'lo {41[50 I-QKZI(C'X ) d)} + 4"€° _jwq l(x :9)K21(C,x ,0) dx

-]

. 1 ' ' 1 e ' ' '
*2'50 {Tﬁ ]Kzz(g'c’ dr’}+41re fqz(c,e)xzz(c.c)dc] |
- o (3.6b) |

The integrals of the kernel functions are somewhat tedious but . :

can be performed to give

i o 1 2hy
ap——— ' ' = =
{41re° lel(x,x ) dx Treg wn| — 'Sll (3.7a)
- 00
o 2h
o ' i T 2Y . .

-

oo

2 -2 2
1 i ' -1 x“sin” (9) +a _ -f(x,0)
{Z‘"EO fxlz(xlc rB) d;} 4'"8 zn{——z 2 "2}: 4-"8_— (3-7C)

e x"sin” (0)+8 o

¢ sin” (@) +8

- P 2
N ) : ' =3 2!‘!{; sin” (8) +a } = -f,:,g’ 8) (3.74) .
{mg Ile(;,x »9) dx'f= 5 o




Recognizing that Q'lo 511 = Vl and Q'ZO s22 = v2 for the
isolated lines, we arrive at the coupled pair of integral

equations for the excess charges given by,

fq'l(x'pe) Kll(x.x') dx' + IQ'z(C',e) Klz(x.C',e) az!

-0 o0
= c'ZV2 £ix,0) (3.8a)
[Q'l(x',ﬁ) K21(C,X',9) dx' +fQ'2(C'p9) K22(C,C') ac’
= C'lV1 f(z,0) (3.8b)

In writing above, we have introduced the unperturbed line

capacitances of the two transmission lines given by

At s Q'lo - (-Q'lo) 5 Q'lo 2 2me : 2me 2
1 Vl - (-Vl) Vl En(Zhl/a) 91

S 250 - (=2',,) : Q'20 : 2me A 2me e
2 V2 - (-V2) V2 2n(2h2/a) 92

and the two forcing functions can be written in a shorthand

form as

£’ sin”(0) +i§ (3.10)

£(£,6) =~ &n
52 sinz(e) + B

W T Y Y s R

We can now define a capacitive coefficient matrix associated

with the excess charges as
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3 (3.11)
]
so that ; ‘
q'y(x,6)
kll (x, 9) = ———v—l—- (3»123) 4
vV, =0 [
2 {
|
klz(x,e) = V2 (3.12b) E
V., =0 |
1 |
1_
k21(519) = ——Vl— (3.12c) ‘:
V2 =0
qQ',(Z,9)
ky,(L,8) = —S—— (3.124) E
2
V1=° .

and the lumped self capacitances in the coupling model are

given

by,
C1 = f[kll(x,e)

+

k12 (x,0)] dx

2 f [kll(x,e) % klz(x,e)] dx (3.13a)
0

I 2 ] k,,(2,8) + k,,(z,8)] dz  (3.13b)
4 J i o

-




e = -f ky,(x,6) dx = -2] ky,(%,6) dx p
-00 0
u (3.13¢)
= "f k21(;'e) dC = -zf klz(c'e) dz
-00 0

We may now set up the integral equations for the excess

capacitive coefficients of equation (3.12) by successively

considering V 0 and V, = 0 in equation (3.8).

1 2

1. Setting V 0 in equation (3.8) with v, + 0, but finite,

1
{ leads to
o o0
| L}
. .[ klz(x . 0) Kll(x,x') dx' + j.kzz(c',e) Klz(x,c',e) dac'
- 00 - 00
= C'2 f(x,0) (3.14a)
-] (o<}
j klz(x',e) Kzl(C,x',e) dx' + ]kzz(c',e) KZZ(C,C') az' =0
(3.14Db)
2. Setting V, = 0 in equation (3.8) with V, + 0, but
finite, leads to
[+ -] o
fkn(x',e) Kll(x,x') dx' + kaI(C',S) Klz(x,c',e) dg' =0
- 00 - 00

(3.15a)

d - = c', f(z,0) (3.15b)




A

The remainder of the procedure consists of solving coupled

pairs of equations (3.14) and (3.15) for the excess capaci-
tive coefficients and using them in equation (3.13) to get
the lumped capacitances.

In concluding this formulation, it is observed that
for the special case of 6 = 0, using equations (3.3) and

(3.7) in (3.6), we obtain

- | ] ] ] | ]
Vi = 25451 * 20511 * o0 512 * 1750 512
(3.16)
— L} ] ] L]
Vo = Q39851 *@')9 8y 250 S5 47 Sy
or, using equation (3.2), (3.16) becomes
Vi = Q0 531 * 9 552
(3.17)
Vo = Q9 831 * Q9 Sy,
with
2h 2h
1 ( 1) 1 ( 2)
S = in H S = n| —
11 Zﬂeo a 22 Zneo a
(3.18)
and
Bga " Sy ™ 2nle () - 21 in 2
o AU s TMh an)

These results for 6 = 0, are in complete agreement with the

published results in the literature (see for example [l or 5]).

5. EMP Interaction Handbook, Section 2.4.2, to be published
by the Air Force Weapons Laboratory.
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A. Approximate Analytical Solution

We now develop an approximate analytical solution for
the coupled pairs of integral equations (3.14) and (3.15).
Rewriting these equations in terms of dimensionless excess

capacitive coefficients, we have

-] o

ff12(x"9) Kll(x,x') dx' + [ fzz(r,',e) Klz(x,C',O) ac' = £(x,9)
(3.1%9a)
[flz(x',e)le(c,x',e) ax' + ffzz(c',ﬂ) Kzz(c,c') dc' =0
(3.19b)
and

jffll(x'.e) Ky, (x,x') dx' + jrle(c',e) K,,(x,5",8) a2 =0

-00
-0

(3.20a)

o0© (-

Jffll(x-,e) Kpy (C,%,0) dx' + jerI(c'.e) Ky, (£,8') a2’ = £(2,0)

(3.20b)

where the unknown and normalized excess capacitive coefficients

are defined by

fll(x',e) = kll(x',e)//Ci

£,,(x",0) klz(x-,e)//bi

-.

(3.21)
£,,(5",0) = k(2,00 /3

£,,(c%,0) = kyy 2,00/ ¢

~-e
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We now consider solving the coupled integral equation
(3.19) and a similar method of solu;ion will apply to equation
(3.20) also. To begin with, we expand the excess charges per
unit length Qi(x',e) and Qé(c',e) in Taylor series
about the points x and (¢ respectively. Then, the leading

and the first correction terms are given by

- 99y (x,8)
Qi(x':e) = Qi(x,e) + (x' -x) T T
(3.22)
Q' (z',0) = q'(c,8) + (CL'-%) 332 (Z,8) +
2 5 2 § C e e 0

As a result, the unknown functions in equation (3.19) will have

expansions given by
of

flz(x',e) = flz(x,e) + (x' -x) axlz (x,0) + ...
(3.23)
afzz
(] o ¥ ———
fzz(C 0) = fzz(c,e) + (T z) 3T (C,9) + ...

Considering these expansions in the integrals involving the

self kernels in equation (3.19), for instance,

j'flz(x',e) Kll(x,x') dx' = Allflz(x,e)

[ (x' = x) Kll(x,x') dx' + ... (3.24)

=00

9f, 5 (x,90)

2 X

where, using equation (3.7a), All is a constant given by

Rig ® 4ﬂeo S = 2 2n(2hl/a) (3.25)

11 11
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King [2] has shown that all of the terms in equation (3.24)
involving the derivatives of flz(x,e) contribute insignifi-
cantly compared to the first term under the condition that

the radiation from the transmission lines are negligible.

As a consequence of this approximation which is well justified
at low frequencies, the coupled integral equation (3.19) may

be written approximately as

o

Az 12‘“ 6) + jr fzz(C',e) Klz(x,C',e) ar' = fi(x,9) (3.26a)
Jr flz(X',e) KZl(C,x',e) dx' + 22 22(C 8y = 0 (3.26b)

where it is recalled that

A = 2 2n(2h1/a) and A =02 Zn(2h2/a) (3.27)

11 22

It is now observed that the above equation can be uncoupled

by straightforward algebraic manipulations to obtain,

- -]

(x,8) - . j' flz(x',e) T(x,x',0) dx°®

f(x,0) (3.28)

11 12 AZZ J
8 - 2 £..(c',8) T(Z,C',0) AT' = 1— t(Z,0)
22 22 A 22 “ # ¥ A ’
1 J 11

(3.29)

where the various kernels and the forcing functions are

given by




e

]
T(x,x',0) = J{ Kyp(x,z',0) Ky, (g',x",0) dg’ (3.30a)

oo
T(g,2',0) = [ Klz(x'vC're) K21(Crx':6) dx' (3.30b)
-
g Liad 2
£(x,0) = em{X;8in (8 +a (3.30c)

xzisinIZm + 8

-] [ ]
t(z,0) - f T(CIC'vG) d;' = - f f(x',9) K21(C:x':e) dx'
-0 -0
(3.304)
similarly,

L] (-]

t(x,0) = f’r(x.x',e) dx' - ff(c',e) Klz(x.c'.e) dz'
i e (3.30e)

Once again, using the same approximation as before i.e.,
essentially retaining the leading terms of the Taylor series
expansions of flz(x',e) about flz(x,e), and of, f22(c',e)

about f£ 8), 1in equations (3.28) and (3.29), we have

22(;’

f(XIe)

(3.31)

A22 fzz(C'e) — fzz(Cre) {t(Cle)/All} — {t(c'e)/All}

or, the approximate analytical solutions of the coupled pair
of integral equation (3.19) are given by

A22 f(Xre)

3 t(z,0)
0| ¢ f22(%

AllAzz - t(z,0)

0) ~

f..(x,0) =
N - Sena A11A22

(3.32)




This procedure of obtaining an approximate analytical

solution can also be applied to the other coupled integral
v equation (3.20) resulting in similar expressions for

le(C,B) and fll(x,e). Collecting all the solutions and

making use of equation (3.21), we may write the excess

capacitive coefficients as

ki (x,8) =c) £,(x,0) = C] [AllA;;xieL(x,B)w (3.33a)
k. (x,0) = (x,0) =c! B R (3.33b)
12 €2 f12 2 | A A,, - Ex,0)
s ¢
k_.(z,0) = £4448,0) =C! M gl -1 (3.33¢)
1 1 21 1 A11A22 - t(z,9)
= s
k,,(2,0) = C3 £,,(2,8) =Cj AuA;;_Cie)w;,ey (3.33d) 1

and therefore the normalized capacitances may be calculated

using the above in equation (3.13) along with equation (1.1),

oo r- 1
TSV ! f sl ot VRl P
= ] - = —— »
1 h1C1 J. L AR, t(x,0) : h1
1 w 1
| Cc t(z,0) + A £(z,0)
| (n2) 2 = ’ 22 L dc
t C = |7 ‘f = = (3.34b)
| 2 (hzcz) J L Maptis T NG By

| C r

a2 (nl) _ m = o £(z,0) dx

| m (hlcl) Allj Reihay = €(5,00] By (3.34c)
i - 00

11722




Equations (3.30) and (3.31) are adequate in evaluating the
normalized excess capacitive coefficients (fll' flz' f21

and £ and the normalized lumped capacitive elements of

22)
the equivalent circuit in Figure 1.5. In the following sub-
section, we describe and solve the coupled integral equation
(3.16) or (3.17) by an alternate numerical method by casting
the integral equations into a system of linear equations.

The approximate analytical solution is compared with the

numerical solution in Section III-C.
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B. Numerical Solution
The set of coupled integral equations (3.19) and (3.20)
can also be solved by the method of moments. We may use the

symmetry properties summarized below, to economize the cal-

é y culations.

| fll(-x,e) = fll(x,e) (3.35a)
flz(-x,e) = flz(x,e) (3.35b)
£51(-2.0) = £,,(%,8) {3.35¢c)
f22(~c.9) - fzz(c.e) (3.354d)

The infinite integrals of (3.19) and (3.20) become the follow-
ing semi-infinite integrals by using the above symmetry

relations.
©o

‘,90) Gll(x,X') dx' + ‘]'fzz(c',e) Gy, (x,2",0) ac' = £(x,0)
(3.36a)

0
',8) Gy, (2,x',0) dx' +j £,,05',8) Gy,l5,7) AL’ = 0
= (3.36b)

',0) Gll(x,x') dx' + Jf f21(c',9) Glz(x,c',e) dz* =0
- (3.37a)

£,,(x',8) Gy (L,x',€6) dx' + ffn(c'e) G, (2,C') dE' = £(2,6)
v (3.37b)

F %

G R T

! where the new kernels are

P e i
e

‘ 37

T AT RAP T RIS N R SO MMM TS A A
v i




Gll(x’x') = Kll(x,x') + Kll(x,x') (3.38a)

Glz(x,c',e) = Klz(x,C',e) + Klz(x,-c',e) (3.38b)

G tC,x",9) = K. (,x',0) + K,, (5,=x',9) (3.38¢c)
21 21 21

In order to use the moment method, we divide x into
Xss i=20,1,2, ..., N; and T into Ci, i=0,1,2, .5.4 N
The values x; are taken to be equal to Ci for convenience.
The points Xy and Ly are the truncation points for the
moment method. It is expected that the charge density near
the junction region of the wires changes fairly rapidly, and
decays slowly to zero when x or ¢ 1is very large. Hence
the two different mesh sizes are considered: from Xq to
le the smaller meshes are used, and from le to Xyr we
may use large meshes. The breaking point le was found to
be very closely related to the right-hand-side vector f£(x,0).
For brevity, we shall consider equation (3.36). Let us

assume
< PR &
a2 = flz(xi'e) and 155 = fzz(Ci,e) (3.39)

Using the linear basis functions, we find that (3.36) can

be evaluated by

N N
i i,j i 5
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N
i ¢1.3 z le -
Z a3, 121 + sz 1 0 (3.40b)
! i=0 i=0
where
ey Lox!=x,;
1,) = l-l ’ '
v S0 f L, ~%, Guv(xj'x b A
% i i-1
i-1
1+1 X' -x,
+ 1"'1 (X ,x¥) dx' ; u=1,2; v=1,2
u 141 Cav %3
x *i (3.41)
’ o sig =k
Sik =

0 if 1 # k .

Since Xy =T i the variables x and ¢ are interchangable

in equation (3.41). The integrations of (3.41) can be

evaluated analytically. By reviewing equation (3.38), (3.7),
and (3.8), we find that all the integrations in (3.41) are of

the following type:
u

fz r3x' +1:4 A r

[(x' ;rl)z +r

1 | ] ’
2 2
-\/ul - Zrlul + rl + r2

u, -r;y -r
+ (r4 + r3r1) arcsinh{ ———) - arcsinh|{———
v, »f_

| - (3.42) b

u




A total number of (2N + 2) linear equations can be

formulated from equation (3.40) by taking j = 0,1,2, ..., N.
The (2N + 2) unknowns, qiz and Q;Z can then be readily
solved by matrix methods. The values of f21(xi,6) and

fzz(ci,el can also be solved in a similer manner.

The lumped capacitances can be obtained from equations

(1.1), (3.13), and (3.18). They are

o0
=

nry 1 [
Cl = qu fll(x,e) + flz(x,e) dx
-Q0 =3 =
g 8 \
= = j £,,(x,0) + £,,(x,0)] dax (3.43a)
15 L J
o0 a
(n2) _ 1

]
£,,(2,0) + £, (;.-b dz (3.43b)

ity

(nl)
C le(c,e) dc

le(c,e) dg (3.43c)

Jﬂ“’

3
|
[}
h?h“ o
S8 t——s —

This completes a brief description of the numerical
method of solving the coupled integral equations. 1In the
following subsection, we compare the approximate analytical .
solution with the numerical solution and present the

é‘ capacitance data as well. : :
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C. Discussion of Results

In this section we present the results of a para-
metric study of the normalized excess charges and the
normalized lumped capacitances in the equivalent circuit
of Figure 1.5. It is recalled that, to obtain the
normalized excess charges, one has to solve a set of
coupled integral equations (3.19) and (3.20). Owing to
a lack of experimental data on this problem, ard also to
ensure confidence in the solution, the coupled integral
equations have been solved by two different methods. 1In
Section III-A, an approximate analytical solution which
leads to a closed integral form for the excess charges
was presented. On the other hand, Section III-B described
a numerical method of solving the same set of coupled
integral equations.

In Figures 3.1 to 3.4, we compare the normalized
excess charge distributions along the transmission lines,
obtained by the two methods. This comparison is done
graphically for the four representative cases;

a) (hz/hl) =« 1.5, 6
c) (hz/hl) = 5, 6 = 15° d) (hz/hl)

90°

£9° b) (hZ/hl) = 1.5, 6

(]

5, 8 = 90°
The normalized excess charges are plotted as a function
of normalized coordinates (x/hl) and (g/hl), starting
from the junction region and moving along the transmission
lines. It is seen from the Figures 3.1 to 3.4, that for

all the four cases, the agreement between the approximate
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(hz/hl) = 1.5, (a/hl) = 0,01, 6 = 15°; approximate
analytical solution, ...... numerical solution.

Figure 3.1l. Normalized excess charge distributions along
the two transmission lines.




2 'R

0 15 0 15
(x/h,) (&/n))

(hz/hl) = 1.5, (a/hl) = 0.01, 6 = 90°; approximate
analytical solution, ...... numerical solution.

Figure 3.2. Normalized excess charge distributions along
the two transmission lines.
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Figure 3.3. Normalized excess charge distributions along
the two transmission lines.
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(hz/hl) = 5.0, (a/hl) = 0.01, 9 = 90°; approximate
analytical solution, ...... numerical solution.

Figure 3.4. Normalized excess charge distributions along
the two transmission lines.




analytical and the numerical solution is excellent. Further-
more, as may be expected, the normalized excess charges have
a peak at the junction and decay as one moves away from

the junction.

The normalized excess charges computed from the approxi-
mate analytical solution can then be used in computing the
normalized lumped capacitive elements via equation (3.34) or
(3.43) . The capacitance plots are parametrically displayed
in Figures 3.5 and 3.6.

In Figure 3.5, the normalized lumped capacitances are
plotted as a function of the skew angle which ranges from
small angles to 90°. The case of 6 = 0° is excluded here,
because of the distributed interaction and has been considered
elsewhere in this report. As expected, Figure 3.5 shows that
as the height of the top line is increased, the self capaci-
tance terms decrease.

Figure 3.6, graphically shows the normalized lumped
capacitances as a function of the relative height (hz/hl)
with the skew angle 6 as a parameter. Once again, we
see the expected behavior as the skew angle or the relative

height is varied.
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SECTION IV

Conclusions

In this report, the problem of obtaining the lumped
equivalent circuit to represent the junction region of a
pair of skewed transmission lines is presented. The
coupling model involves evaluating the inductive and capaci-
tive elements. The mutual inductance is evaluated in a
closed form and has been parametrically displayed. To
obtain the capacitive elements, a set of coupled integral
equations have been formulated for the excess charge dis-
tributions. The integral equations have been solved by an
approximate analytical method and also a numerical method
employing the method of moments. The approximate analytical
solution uses a Taylor series expansion of the unknown
functions about a variable, and enables one to express the
excess charges in closed form using a single integration.
The two independent calculations of the normalized excess
charge distributions are compared graphically for representa-
tive cases and seen to be in excellent agreement. Once the
excess charge distributions are determined, it is a simple
matter to evaluate the normalized lumped capacitances. The
results of a parametric study of the capacitance computations

are also presented.
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APPENDIX A

]
o

Transmission Line Coupling for the Special Case of 0

In this appendix, we consider the special case of dis-
tributed interaction between the two transmission lines (see
Figure 1.1) when the skew angle 6 is zero. 1In other words,
the two wires are parallel to each other and are located at
heights h1 and h2 above a perfectly conducting ground plane.
In this case, one cannot derive a junction equivalent circuit
because of the distributed interaction between the wires.

Using the same notation as in Section III, the total charges
per unit length Q'10 and Q'20 may be related to the
potentials V and V on the two wires with respect to the

1 2
ground plane, via the coefficients of capacitance matrix [K]

given by
250 ot K2 Vi
- A.l
Q' R K v -
20 21 22 2

It was seen in Section III that the elements of the coefficients
of elastance matrix [S] are given by

o

[s] = I[K] (A.2)
2h 2h
L 1) . T 2
S11 3TE ln( ~ ) s 822 T3 Zn(—a—) (A.3)
o o
h, + h
1 8 1 2 1
S =8 = n[=) = n — (A.4)
12 21 iweo (a) 21reo (|h2 hll)




These results are in complete agreement with the results
reported in the literature (e.g., [1] and [5]). The elements

of the (K] matrix are then given by

K

K K (-SlZ/A) (A.6)

12 a5 =

where

A = determinant of the S matrix

2 2h 2h
1 1 2 B B
() () () ()

Furthermore, the coefficients of the inductance matrix

are simply related to the [S] matrix as

(L'l = wu,e, Is] (A.8) g
so that,
u 2h u 2h
Vor o o2 £ RPN 0. —2
bk 5 (E‘ﬁ) “n( &) @ B (21:) 9‘“( a) (Rs3)
u

[ = ' - (o] B
L 12 =L 21 o (ﬁ) zn(a) (A.lO)

We have included this special case of 6 = 0 in this
appendix mainly in the interest of completeness. These results
are available in the literature and serve to check the con-

sistency of our formulation in a limiting situation.




